Math Logic: Model Theory & Computability Lecture 06

In order to avoid future headlache with the definition of the variables in a formula, we make the following convention to exclude tornulas at the form $(\forall x(x=y)) \vee (\neg (x=2))$, there the same variable has both quantified and free occurances.

Convention. A variable vi is said to be grantified in a J-tormula l if there is a subtornala of the form Iv: Y in P. We all I valid if each variable vi is grantified in it at most once, i.e. occurs in at most one subformule of the form I vi Y, and if it has such an occurcance, then it doesn't appear anywhere else outside of Zvi Y.

Thus, (#x(x=y)) V (~ (x=Z)) is invalid becare x is quantified but also appears outside of the subtormula 3x-1 (x=g). The ady incomenience with this convention is when we use binary logical concedira such as QVY, QAY, Q>Y, we need to reduce when the Q and Y use different sets of quantified variables. Below when we say a "o-formula" we mean 4 valid 5-formula".

Det. A variable Vi is said to be free in a (valid) o-formula 9 if it appears in 9 but is not quantified in 9, For a rector V:= (Vn, Vn.,..., Vne), we call 9(V) an extended orformula if all free variables of 8 appear in V and none of the quantified variables of 8 appear in V. Note that as with extended o-terms, V may nonfain extra variables that doubt appear in 9. A o-formula is called a sendence of thes no free variables.

Nitution repeating relation. For a k-arg relation R on a set X, i.e. R5X',
out
$$\vec{w} \in X''$$
, we often write "R(\vec{w})" or "R(\vec{w}) holds" to just near
that $\vec{w} \in R$. We also say by "R(\vec{w}) to rise if $\vec{w} \notin R$.
For example, for a binney celetion \leq , ve write $x_1 \leq x_2$ and not
 $(x_1, x_2) \in \leq$.
A Orang relation R on X is a related of $X'' := \{\emptyset\}$. Thus, either
 $R = X''$ (always town) or $R = \emptyset$ (always false).
Det. For a restructure $A := (A, O)$ and an estended or formula $P(\vec{v})$ or the
 $n := |\vec{v}|$, we define the interpretation of $P'(\vec{v})$ in A as an *n*-arg relation
by induction on the underational durit of \vec{v} as $A = (A_1 \otimes A_1)$
(i) $\Psi := t_1 = t_1$. Thus it must be that $t_1(\vec{v})$ and $t_1(\vec{v})$ are extended \vec{v} -
terns and we define $P^{\Phi}(\vec{v})(\vec{a}) :<-> t_1^{\Phi}(\vec{v})$.
(ii) $\Psi := R(t_1,...,t_N)$, where $R \in Re[(O)$, $t_1,...,t_N$ are ordering. Then $x_2 \in i$ define
 $P^{\Phi}(\vec{v})(\vec{a}) :=> R^{\Phi}(t_1^{\Phi}(\vec{a}))$.
(iii) $\Psi := Y, V Y_2$, for σ -tormlas Y_1, Y_2 . Thus it and the by induction:
 $\Psi^{\Phi}(\vec{v})(\vec{a}) :=> P^{\Phi}(\vec{v})(\vec{a})$ or $Y_2^{\Phi}(\vec{v})[\vec{a}]$.
(iii) $\Psi := T, V, Y_2$, for σ -tormlas Y_1, Y_2 . Thus it and by induction:
 $\Psi^{\Phi}(\vec{v})(\vec{a}) :=> P^{\Phi}(\vec{v})(\vec{a})$ or $Y_2^{\Phi}(\vec{v})[\vec{a}]$.
(iii) $\Psi := T, V, Y_2$, for σ -tormlas Y_1, Y_2 . Thus it must be but $Y_1(\vec{v})$ and
 $Y_1(\vec{v})$ and extended σ -formlas, $q \neq (\vec{v})(\vec{a})$ or $Y_2^{\Phi}(\vec{v})[\vec{a}]$.
(i.e. the union of $Y_1^{\Phi}(\vec{v})$ and $Y_2^{\Phi}(\vec{v})$).
(iv) $\Psi := \neg Y$, by a σ -formla Ψ . Thus $\Psi (\vec{v})$ is an extended σ -formlas
 $P^{\Phi}(\vec{v})(\vec{a}) :=> \Psi^{\Phi}(\vec{v})(\vec{a})$ fails.
(i.e. the complexect of $\Psi^{\Phi}(\vec{v})$)

(V)
$$\Psi := \exists u \Psi$$
, where u is a variable and Ψ is a σ -formula. Then u does
not appear in \vec{V} and is not quantified in Ψ . Thus, $\Psi(\vec{v}, u)$
is an extended σ -formula and we define by induction:
 $\Psi^{\Delta}(\vec{v})(\vec{a}) : <=>$ there is $b \in A$ such that $\Psi^{\Delta}(\vec{a}, b)$ holds.

Notation. Another way of saying that
$$\mathcal{U}^{\Delta}(\overline{J})(\overline{a})$$
 holds is to say that
A satisfies $\mathcal{U}(\overline{J})(\overline{a})$, and we write this as $A \models \mathcal{U}(\overline{J})(\overline{a})$.
Like with terms, we also drop (\overline{J}) from notation and simply write
 $A \models \mathcal{U}(\overline{a})$ if \overline{V} is dear from the variable. As above, or with use
other byical variedizes $\Lambda, \rightarrow, \longleftrightarrow$ and partitier \overline{V} as abbre-
viations for $\neg(\neg \vee \neg)$ ($\neg \vee \vee \vee$), ($\psi \rightarrow \psi$) $\wedge(\psi \rightarrow \psi)$, $\neg \exists u \neg \psi$.
We also write $t_1 \neq t_2$ for $\neg(t_1 = t_2)$.

Examples. (a)
$$T_{arthin} := (0, S, +, \cdot)$$
, where S is a unary function symbol and
the other symbols are as expected. Recall that 2:= S(S(0)) and
(et $P := 2 = v_0$. Then $P(v_0)$ is an extended T_{arth} - formula and is inter-
preted in $\underline{N} := (IN, 0, S, t, \cdot)$, then $S^{\underline{N}} : IN \to IN$, is a unary
celedion there
 $P^{\underline{N}}(v_0)(a)$ holds $L = S = 2$,
i.e. $P^{\underline{N}}(v_0) = \{2\} \leq IN$

(b) Again in $N:=(N, 0, 5, t, \cdot)$, we have: 0 for $\leq (x, y) := \exists z (x + z = y)$, $N \models \leq [a, b] \iff a \leq b$, for all $(a, b) \in \mathbb{N}^2$.

(antion. If seems like we can't define the exponentiation buckson
in this structure, i.e. a Jacture-torumla
$$\Psi(v,v)$$
 such
that $\Psi = \Psi(a_1b_2c)$ <=> $a^b = c$, so us didn't use this.
However, if is true that such a Ψ exists, but is difficult
to see why. We will leave if as an exercise.

O Goldbach := ∀x (dir(2,x) → ∃y∃z (Prindy) ∧ Prind(z) ∧ (x=y+z)). Its interpretation in N:=(N,0,5,+,.) is the tamous Goldbach wijecture, which is still one of the widest open problems in humber theory, so we don't know whether N = Goldbach or not.

(c) For the save formula P:= 2=vo, P(vo,vi) is an extended Oarth-tormula and its interprediction in N:= (N, 0, s, +, ·) is a bicarg relation P^N(vo,vi) ≤ IN² such Wt for all (a, b) ∈ IN², N = P(a, b) <=> a=2.

(1) In
$$\underline{R} := (R, 0, 1, t, \cdot)$$
, the extended brunch $Pos(x) := \exists y (x = y \cdot y)$.
Then for all $a \in R$, we have $\underline{R} \models Pos(a) \iff a$ is non-negative.