Math Logic: Model Theory \& Computability
Lecture 06
In order to avoid future headache with the definition of tree variables in a formula, we make the following convention to exclude formulas of the form $(\forall x(x=y)) \vee(\neg(x=z))$, here the sane variable has both quantified and free occurances.

Convention. A variable v_{i} is said bo be quantified in a σ-formula φ if there is a sabtornula of the form $\exists_{v_{i}} \psi$ in φ. We all φ valid if each variable v_{i} is quantified in it at most once, ie. occurs in at most one subformula of he form $\exists v_{i} \Psi$, and if it has such an occusance, then it doesn't appear anywhere else outride of $\exists v_{i} \Psi$.
 also appears outside of the sebformmala $\exists x-7(x=y)$. The only incoavenience with this convention is when we use binary logical wonectives such as $\varphi \vee \psi, \varphi \wedge \psi, \varphi \rightarrow \psi$, we need to wace sere $k t$ φ and ψ use different sets of quantified variables. Below when we say a "r-formula" we mean "valid σ-formula."

Def. A variable v_{i} is said to be free in a (valid) σ-formula φ if it appears in φ but is not quantified in φ, For a -actor $\vec{v}:=$ $\left(v_{n_{1}}, v_{n_{2}}, \ldots, v_{n_{e}}\right)$, we call $\varphi(\vec{v})$ an extencled σ-formula if all free variables of φ appear in \vec{V} and wone of the suactified variables of φ appear in \vec{V}. Note that as with extended σ-tecons, \vec{v} may contain extra variables that don't appear in φ. A o-formita is called a sentence if it has so free variables.

Notation regarding relations. For a k-arg relation R on a set X, i.e. $R \leq X^{4}$, and $\vec{a} \in X^{n}$, re often write " $R(\vec{a})$ " or " $R(\vec{a})$ holds" to just wean that $\vec{a} \in R$. We also say hat "R(a) tails" if $\vec{a} \notin R$.
For example, for a binary relation \leq, we write $x_{1} \leqslant x_{2}$ and not $\left(x_{1}, x_{2}\right) \in \leqslant$.
A-arg relation R on X is a subset of $X^{0}:=\{\phi\}$. Thus, either $R=X^{0}$ (always true) or $R=\varnothing$ (always false).

Def. For a r-structure $A:=(A, \sigma)$ and an extencled σ-formula $\varphi(\vec{v})$ with $n:=|\vec{v}|$, we define the interpretation of $\varphi \frac{1}{}(\vec{v})$ in $\frac{A}{}$ as an n-ary relation by induction on the constaction/length of φ as Allows: for all $\vec{a} \in A^{n}$:
(i) $\varphi:=t_{1}=t_{2}$. Then it aust be that $t_{1}(\vec{v})$ and $t_{2}(\vec{v})$ are extencled v terns and we define $\varphi^{A}(\vec{v})(\vec{a}): \Leftrightarrow t_{1}^{A}(\vec{a})=t_{2}^{A}(\vec{a})$.
(ii) $\varphi:=R\left(t_{1}, \ldots, t_{k}\right)$, where $R \in \operatorname{Re}_{k}(\sigma), t_{1} \ldots, t_{k}$ are σ-feces. Then again it mast be ht $t_{i}(\vec{v})$ is an extencled 0 -term tor $i=1, \ldots, k$, so we define

$$
\varphi^{A}(\vec{v})(\vec{a}):<\Rightarrow R^{A}\left(t_{1}^{A}(\vec{a}), \ldots, t_{k}^{A}(\vec{a})\right) .
$$

(iii) $\varphi:=\psi_{1} \vee \psi_{2}$, for σ-formulas ψ_{1}, ψ_{2}. Thun it mast be hat $\psi_{1}(\vec{v})$ and $\Psi_{2}(\vec{v})$ ane extencled σ.formulas, and we define bs induction:

$$
\varphi A(\vec{v})(\vec{a}): \Leftrightarrow \quad \psi_{1}^{A}(\vec{v})(\vec{a}) \text { or } \psi_{2}^{A}(\vec{v} \mid(\vec{a}) .
$$

(ie. She union of $\psi_{1}^{A}(\vec{v})$ and $\psi_{2}^{A}(\vec{v})$).
(iv) $\varphi:=\neg \psi$, for a σ-formula ψ. Then $\psi(\vec{v})$ is an extencled σ-forms so we define by induction:

$$
\varphi^{A}(\vec{v})\left(\vec{a}^{\prime \prime}\right): \Leftrightarrow \psi^{A}(\vec{v})(\vec{a}) \text { fails. }
$$

(ie. the conplenect of $\psi^{A}(\vec{v})$)
(v) $\varphi:=\exists u \psi$, were u is araciable and ψ is a σ-formula. Then u does not appear in \vec{v} and is not quantified in ψ. Thus, $\psi(\vec{v}, u)$ is an extended σ-formula and we define $l /$ induction: $\varphi^{A}(\vec{v})(\vec{a}): \Leftrightarrow$ there is $b \in A$ such that $\psi A(\vec{a}, b)$ holds.

Caution. As (v) shows, we wang only quantify over the elements of the uncleslying structure. This why we sag Hat we stands orcher logic. The sacond-order logic allows gnanatificction over subuts of the underlying structure, and is be gond his course.

Notation. Another way of saying tut $\varphi^{A}(\vec{v})(\vec{a})$ holds is to say that A satisfies $\varphi(\vec{v})(\vec{a})$, and we rite $h_{i s}$ as $\underline{A} \not \vDash \varphi(\vec{v})(\vec{a})$.
Like with terms, we also drop (\vec{v}) frow notation and simply write $A \vDash \varphi(\vec{a})$ if \vec{v} is clear tron the catext. As above, we will use - thee logical concectives $\Lambda, \rightarrow, \longleftrightarrow$ and kactitier \forall as ablerviations for $\neg(\neg \vee \neg),(-\varphi \vee \psi),(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi), \neg \exists \mu \neg \psi$. W_{e} also write $t_{1} \neq t_{2}$ for $\neg\left(t_{1}=t_{2}\right)$.

Examples. (a) $\sigma_{\text {acth }}:=(0, S,+, \cdot)$, where S is a unary function sgabol aced the other symbols are as expected. Recall that $2:=S(S(0))$ ad let $\varphi:=i=v_{0}$. Then $\varphi\left(v_{0}\right)$ is an extended $\sigma_{\text {arts }}$-for mulla and is interpreted in $N:=(\mathbb{N}, 0, S,+, \cdot)$, sea $S \mathbb{N}: \mathbb{N} \rightarrow \underset{n \rightarrow n+1}{\mathbb{N}}$, is a unary relation there

$$
\varphi^{N}\left(v_{0}\right)(a) \text { colds } \Leftrightarrow a=2
$$

ie. $\quad \varphi \mathbb{N}\left(v_{0}\right)=\{2\} \leq \mathbb{N}$.
(b) Again in $\underline{N}:=(\mathbb{N}, 0, S,+, \cdot)$, we have:

0 for $\operatorname{div}(x, y):=\exists u(x \cdot u=y), \underline{N} \vDash \operatorname{div}(a, b) \Leftrightarrow a \operatorname{divides} b$, for all $(a, b) \in \mathbb{N}^{2}$.

- for prime $(y):=\forall x(\operatorname{div}(x, y) \rightarrow(x=i \vee x=y))$, \underline{N} Fpinelal $\Leftrightarrow a$ is prime, for all $a \in \mathbb{N}$.
O for each fixed natural number $n \in \mathbb{N}$, we can write a $\sigma_{\text {arch_ }}$ - formula Fermat $:=\forall x \forall y \forall z((\underbrace{x \cdot x \ldots x}_{n}+\underbrace{y \cdot y \cdot \ldots \cdot y}_{n}=\underbrace{z \cdot z \cdot \ldots z}_{n}) \rightarrow$
$(x=0 \vee y=0 \vee z=0))$. Then we know the $\underline{N} \rightarrow$ Fermat 2 became $3^{2}+4^{2}=5^{2}$ for example, but clue to the famous of A. Wiles, we how kino Rot $N \in$ Fermata $_{n}$ for all $n \geqslant 3$.

Caution. It seems like we can't define the exponentiation terechix is this ituctare, i.e. a $\sigma_{\text {arthen }}$-formal $\varphi\left(v_{0}, v_{1}\right)$ such that $\underline{N} \not \varphi(a, b, c) \Leftrightarrow a^{b}=c$, so we dida'f use this. However, it is true hat such a φ exists, lat is difficult to see why. We will leave it as an exercise.

- Goldbach: $\forall x\left(\operatorname{dir}(2, x) \rightarrow \exists y \exists z\left(P_{\text {rind }}(y) \wedge P_{\text {cine }}(z) \wedge(x=y+z)\right)\right.$. Its interpretation is $N:=(\mathbb{N}, 0, S,+, \cdot)$ is the taw owns Goldbach conjecture, which is still one of the widest open problems ic number Kerry, so we chon't know whether $\mathcal{N} F$ Gold bach or not.
(c) Fer the save formula $\varphi:=\dot{2}=v_{0}, \varphi\left(v_{0}, v_{1}\right)$ is an extencled $\sigma_{a r k}$-tormule and its inferpretaction in $N:=(\mathbb{N}, 0,5,+, \cdot)$ is a hilary velaton $\varphi^{\mathbb{N}}\left(v_{0}, v_{c}\right) \leq \mathbb{N}^{2}$ switch $\hat{\text { bit }}$ for all $(a, b) \in \mathbb{N}^{2}$,

$$
\underline{N} \vDash \varphi(a, b) \quad \Leftrightarrow \quad a=2 .
$$

(d) In $\underline{R}:=(\mathbb{R}, 0,1,+, \cdot)$, the extended formula $\operatorname{Pos}(x):=\exists_{y}(x=y-y)$. Then for all $a \in \mathbb{R}$, we have $\underline{R} \vDash \operatorname{Pos}(a) \Leftrightarrow a$ is non-negative.

